Maximum a posteriori estimation for Markov chains based on Gaussian Markov random fields

نویسندگان

  • Hao Wu
  • Frank Noé
چکیده

In this paper, we present a Gaussian Markov random field (GMRF) model for the transition matrices (TMs) of Markov chains (MCs) by assuming the existence of a neighborhood relationship between states, and develop the maximum a posteriori (MAP) estimators under different observation conditions. Unlike earlier work on TM estimation, our method can make full use of the similarity between different states to improve the estimated accuracy, and the estimator can be performed very efficiently by solving a convex programming problem. In addition, we discuss the parameter choice of the proposed model, and introduce a Monte Carlo cross validation (MCCV) method. The numerical simulations of a diffusion process are employed to show the effectiveness of the proposed models and algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

­­Image Segmentation using Gaussian Mixture Model

Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...

متن کامل

Improving Multispectral Image Classification by Using Maximum Pseudo-Likelihood Estimation and Higher-Order Markov Random Fields

In this paper we address the multispectral image contextual classification problem following a Maximum a Posteriori (MAP) approach. The classification model is based on a Bayesian paradigm, with the definition of a Gaussian Markov Random Field model (GMRF) for the observed data and a Potts model for the a priori knowledge. The MAP estimator is approximated by the Game Strategy Approach (GSA) al...

متن کامل

Empirical Bayes Estimation in Nonstationary Markov chains

Estimation procedures for nonstationary Markov chains appear to be relatively sparse. This work introduces empirical  Bayes estimators  for the transition probability  matrix of a finite nonstationary  Markov chain. The data are assumed to be of  a panel study type in which each data set consists of a sequence of observations on N>=2 independent and identically dis...

متن کامل

IMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL

  Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010